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Abstract We show that the fluctuations of the partial current in two dimensional diffusive
systems are dominated by vortices leading to a different scaling from the one predicted
by the hydrodynamic large deviation theory. This is supported by exact computations of
the variance of partial current fluctuations for the symmetric simple exclusion process on
general graphs. On a two-dimensional torus, our exact expressions are compared to the
results of numerical simulations. They confirm the logarithmic dependence on the system
size of the fluctuations of the partial flux. The impact of the vortices on the validity of the
fluctuation relation for partial currents is also discussed in an Appendix.

Keywords Exclusion processes · Diffusive systems · Partial currents · Fluctuation
theorem · Vortices

1 Introduction

Recently, it has been shown how to compute the large deviation function of the current in
one dimensional diffusive systems [2–7]. The hydrodynamic large deviation theory [2, 11,
18], yields explicit expressions for the large deviation function as well as the cumulants of
the current fluctuations (under some stability condition [5, 7]). The same hydrodynamical
approach applies in principle also to currents in higher dimension. In the present paper
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we show however that this approach does not always catch the correct scaling of the large
deviations or of the cumulants of the current in higher dimensions. This will be made explicit
in the case of the 2 dimensional symmetric simple exclusion process (SSEP).

For a one dimensional diffusive system of length L in contact at its left end with a reser-
voir at density ρa and at its right end with a reservoir at density ρb , one can consider the
total net number Q(τ) of particles leaving the left reservoir during a time interval τ . This
number Q(τ) fluctuates in time and one expects that in the long time limit

Pro

(
Q(τ)

τ
� J

)
∼ exp[−τGL(J ;ρa,ρb)] (1.1)

where GL(J ;ρa,ρb) is the large deviation function of the flux through the system. In fact
GL does not depend on where the flux, i.e. the integrated current, is measured along the one
dimensional system, as long as particles cannot accumulate. For large L and for J of order
1
L

, GL satisfies, the following scaling

GL(J ;ρa,ρb) � 1

L
F(LJ ;ρa,ρb). (1.2)

The scaling (1.2) implies that for large L all the cumulants of Q(τ) are of order 1/L, i.e.

lim
τ→∞

〈Q(τ)n〉c
τ

� 1

L
κn(ρa, ρb). (1.3)

Explicit expressions of the κn(ρa, ρb) have been obtained [5, 7] in terms of the diffusion
constant D(ρ) and the conductivity σ(ρ) [22]. One can also show that the large deviation
function GL of the current satisfies the fluctuation theorem [2, 5, 7, 12–15, 19–21], i.e.

GL(J ;ρa,ρb) − GL(−J ;ρa,ρb) = J [log z(ρb) − log z(ρa)] (1.4)

where z(ρ) is the fugacity of a reservoir at density ρ.
In higher dimension, one can study, as in one dimension, the total current flowing through

the system from one reservoir to the other, but one can also study part of this current. In this
paper, we consider the SSEP on a square lattice of size L, with periodic boundary conditions
in the vertical direction and study the current flowing through a vertical slit of length � < L

(see Fig. 1). The large deviation function GL,�(J ;ρa,ρb), defined as in (1.1), depends of
course on the size � of the slit. One reason for considering the fluctuations of this partial

Fig. 1 We are going to consider
the distribution of the current
flowing through the dashed
vertical slit of length � < L



Vortices in the Two-Dimensional Simple Exclusion Process 823

current is that in experiments it is often only possible to measure the fluctuations of local
quantities and not of global quantities [8, 9].

In two dimensions, when � = L, i.e. when one considers the total current flowing through
the system, the large deviation function derived from the hydrodynamic theory satisfies for
large L and for J of order 1 a scaling similar to the one dimensional case [4]

GL,L(J ;ρa,ρb) � F(J ;ρa,ρb) (1.5)

(this would become Ld−2F(L2−dJ ;ρa,ρb) for a cube of size L in dimension d and J of
order Ld−2). In the present paper we show that GL,� cannot satisfy the same scaling (1.5) as
GL,L and that for large L, if one keeps the ratio h = �/L fixed, then for all 0 < h < 1 and J

of order 1

GL,Lh(J ;ρa,ρb) → 0 as L → ∞. (1.6)

While, as in (1.3), one expects the cumulants of the total flux Q(τ) to have a large L

limit

lim
τ→∞

〈Q(τ)n〉c
τ

→ κn(ρa, ρb) (1.7)

(which would become 1
τ
〈Q(τ)n〉c � Ld−2κn(ρa, ρb) in dimension d), we will see by an

explicit calculation of the second cumulant that for � = Lh,

lim
τ→∞

〈Q(h)(τ )2〉c
τ

∼ logL as L → ∞, when 0 < h < 1, (1.8)

where Q(h)(τ ) is the flux of particles through the slit during time τ .
The fluctuation theorem, which is satisfied as written in (1.4) for the two-dimensional

SSEP when J is the total current through the system (i.e. when � = L), has in fact no reason
to remain valid for � < L: in the large L limit, the difference GL,Lh(J ) − GL,Lh(−J ) van-
ishes when 0 < h < 1 so that (1.4) cannot hold and a singular dependence can be expected
in GL,Lh(J ) when h → 1. In Appendix A, we give a simple example of a two site model
where one can see clearly that the fluctuation theorem is satisfied when one looks at the
total current but is no longer valid when one considers only part of the current (see [1] for a
discussion on the validity of the fluctuation theorem for partial currents).

The rest of the paper is organized as follows. In Sect. 2, we recall the hydrodynamic large
deviation theory [2, 6] and show the asymptotics (1.6). Although the hydrodynamic large
deviation theory does not predict the correct scaling of the current deviation, the analysis
of Sect. 2 suggests that local current fluctuations are dominated by vortices. Restarting at
the microscopic level, the variance of the integrated current is computed for the SSEP on
a general graph (Sect. 3) and explicit expressions are obtained for the current through a
slit for the SSEP on a two-dimensional torus (Sect. 4). Our exact expression leads to the
asymptotics of the form (1.8) and are compared to the results of numerical simulations.
Finally the appendices are devoted to comments on the fluctuation relation (1.4) for partial
currents, and to some technical calculations. We note that Sects. 2, 3 and Appendix A can
be read independently.

2 Vortices and Current Fluctuations

For simplicity, we briefly recall the large deviation hydrodynamic limit theory in the frame-
work of the two-dimensional SSEP on the square lattice in the periodic domain Λ = {1,L}2.
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At the microscopic level, each particle jumps randomly with rate 1 to a nearest neighboring
site and the jump is allowed only if the neighboring site is empty. After rescaling space by
1/L and time by 1/L2, the macroscopic density ρ(x, t) obeys the diffusion equation [17,
22] in the macroscopic domain Λ̂ = [0,1]2, (with periodic boundary conditions),

∂tρ(x, t) = 	ρ(x, t), x = (x1, x2) ∈ Λ̂, (2.1)

where 	 denotes the Laplacian. One can also define a macroscopic current j (x, t) =
(j1(x, t), j2(x, t)) in the directions 	e1, 	e2 which has to satisfy

∂tρ(x, t) = −∇ · j (x, t).

The rescaled current j is such that if q(i,i+	eα)(τ ) is the microscopic integrated current through
the bond (i, i + 	eα) (with α = 1 or 2) over the microscopic time interval [0, τ ], then for a

system of size L and times τ of order L2, one has q(i,i+	eα)(τ ) = L
∫ τ/L2

0 jα(
i
L
, t) dt .

Using the hydrodynamic large deviation theory, we are going to show that the scaling of
the large deviations is different for the current flowing through the whole system or through
a slit (as in Fig. 1).

2.1 Total Current Deviations

We denote by Q(τ) the integrated total current during the microscopic time interval [0, τ ]
through a vertical section of the whole system, say the current flowing through the edges
{(L/2, i2), (L/2 + 1, i2)}1≤i2≤L. The corresponding large deviation function GL,L is defined
by

lim
τ→∞− 1

τ
log Pro

(
Q(τ)

τ
≈ J

)
= GL,L(J ), (2.2)

where Pro(Q(τ)

τ
≈ J ) denotes the probability of observing a total current J in the 	e1 direction

averaged over the microscopic time interval [0, τ ]. According to the large deviation hydro-
dynamic theory, one expects, in accord with (1.5) that limL→∞ GL,L(J ) = F(J ) where the
function F(J ) = limT →∞ FT (J ) with

FT (J ) = inf
j,ρ

{
1

T
IT (j, ρ)

}
, and

(2.3)

IT (j, ρ) = 1

2

∫ T

0

∫
Λ̂

dt dx

(
j1 + ∂x1ρ

)2 + (
j2 + ∂x2ρ

)2

2ρ(1 − ρ)
.

The minimum is taken over the macroscopic evolutions {ρ(x, t), j (x, t)} during the macro-
scopic time interval [0, T ] which satisfy the constraints

∂tρ(x, t) = −∇ · j (x, t), and J = 1

T

∫ T

0

∫ 1

0
dt dx2j1

((
1

2
, x2

)
, t

)
. (2.4)

Remark 2.1 Note that the mathematical statement from the hydrodynamic limit theory [3]
relies on a more involved asymptotic with a joint space/time scaling: instead of (2.2), the
large deviation function for a total current J over the microscopic time interval [0,L2T ] is
given by

lim
L→∞

− 1

L2T
log Pro

(
Q(L2T )

L2T
≈ J

)
= FT (J ),
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where FT has been introduced in (2.3). When writing (2.2), (2.3), we assumed that in the
previous expression the limits L → ∞ and T → ∞ can be exchanged.

As we consider in this section a system with periodic boundary conditions and no
sources, the steady state is the equilibrium one in which all configurations with a speci-
fied total of number particles have equal weight. The mean current through the system is
therefore 0 and we are going to show that for any current deviation J 
= 0

F(J ) > 0. (2.5)

Expanding IT in (2.3) and using Jensen’s inequality leads to

IT (j, ρ) = 1

2

∫ T

0

∫
Λ̂

dt dx

[
(j1)

2 + (j2)
2

2ρ(1 − ρ)
+

(∇ρ
)2

2ρ(1 − ρ)

]
+ CT

≥
∫ T

0

∫
Λ̂

dt dx(j1)
2 + CT ≥ T

(
1

T

∫ T

0

∫
Λ̂

dt dxj1

)2

+ CT , (2.6)

where CT is the contribution of the cross terms in (2.3)

CT = 1

2

∫ T

0

∫
Λ̂

dt dx
j · ∇ρ

ρ(1 − ρ)
= 1

2

∫
Λ̂

dx{S(ρ(x,0)) − S(ρ(x,T ))}

with S(ρ) = −[ρ log(ρ)+(1−ρ) log(1−ρ)]. As it is equivalent to measure the total current
through any section of the system, the constraint (2.4) on the current deviations becomes

J = 1

T

∫ T

0

∫
Λ̂

dt dxj1(x, t). (2.7)

Thus infj,ρ{IT (j, ρ)} ≥ T J 2 + CT . As CT remains bounded in time, (2.5) follows
from (2.3).

2.2 Partial Current Deviations

The functional IT defined in (2.3) should in principle provide the large deviations of the cur-
rent through any macroscopic region of the system. We consider now a slit of macroscopic
height h < 1 (the segment [(1/2,0), (1/2, h)]) and denote by Q(h)(τ ) the integrated current
through the slit during the microscopic time interval [0, τ ], i.e. the current flowing through
the edges {(L/2, i2), (L/2 + 1, i2)}1≤i2≤hL. Then, the large deviation function for observing
a current deviation J 
= 0 is given by

lim
τ→∞− 1

τ
log Pro

(
Q(h)(τ )

τ
≈ J

)
= GL,Lh(J ).

One expects from (1.5), that limL→∞ GL,Lh(J ) = Fh(J ) with

Fh(J ) = lim
T →∞

inf
j,ρ

{
1

T
IT (j, ρ)

}
(2.8)

where IT (j, ρ) is defined in (2.3) and the macroscopic constraints (2.4) are replaced by

∂tρ(x, t) = −∇ · j (x, t), and J = 1

T

∫ T

0

∫ h

0
dt dx2j1

((
1

2
, x2

)
, t

)
. (2.9)
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Fig. 2 On the left, two vortices
located at the edges of the dashed
slit are depicted. On the right, a
blow up of one vortex
concentrated on the disk of radius
(r1, r2): the current (2.12), (2.13)
is proportional to 1/r for r in
(r1, r2) and vanishes outside this
annulus

We are going to show that in contrast to (2.5), the large deviation function Fh in (2.8) van-
ishes for 0 < h < 1 (as claimed in (1.6)).

One can bound (2.8) by

inf
j,ρ

{
1

T
IT (j, ρ)

}
≤ F̃h(J ),

where the functional F̃h(J ) is the restriction of IT to time independent density and current
profiles,

F̃h(J ) = inf
j,ρ

{
1

2

∫
Λ̂

dx

[
(j1)

2 + (j2)
2

2ρ(1 − ρ)
+ (∇ρ)2

2ρ(1 − ρ)

]}
(2.10)

where the density and current constraints satisfy

0 = ∇ · j = ∂1j1(x) + ∂2j2(x), and J =
∫ h

0
dx2j1

(
1

2
, x2

)
. (2.11)

A guess to bound (2.10) is to consider the equilibrium density (uniformly equal to the
constant density ρ̄) and a current deviation consisting of two vortices localized at the edges
of the slit (1/2,0) and (1/2, h) (see Fig. 2)

∀x ∈ Λ̂, j (x) = J (Φ(x − (1/2, h)) − Φ(x − (1/2,0))), (2.12)

where Φ denotes the vector

∀x = (x1, x2), Φ
(
x
) = 1

2 log(r2/r1)

1{r1≤
√

x2
1 +x2

2≤r2}
x2

1 + x2
2

(−x2, x1), (2.13)

with r1 < r2 � 1. One can check that the current defined in (2.12) satisfies the constraint
(2.11). Furthermore, we can bound F̃h(J ) by,

F̃h(J ) ≤ 1

4ρ̄(1 − ρ̄)

∫
Λ̂

dx[(j1)
2 + (j2)

2] = π

4ρ̄(1 − ρ̄)

J 2

log(r2/r1)
. (2.14)

Letting r1, r2 go to 0 while r2
r1

diverges, we find that F̃h(J ) = 0 so that the large deviation
cost in (2.8) is 0.

Remark 2.2 On a finite lattice of size L, the current has to flow through the bonds and there-
fore the ratio r2/r1 is at most L. This imposes a cut-off and the computation (2.14) based
on (2.10) leads to GL,Lh(J ) of order 1

logL
. This logarithmic dependence will be confirmed

for the SSEP by a direct computation of the current fluctuations in Sects. 3 and 4.
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Expression (2.14) shows that the cost of the fluctuations due to the vortices is low
and one may wonder if the vortices are the optimal minimizers of (2.10) or whether one
should expect a more complex structure. To check this, we first note that the current j in
(2.11) is divergence free, thus it can be represented as the sum of the curl of a vector field
(0,0,Ψ (x1, x2)) and a constant vector field (C1,C2)

j = ∇ × (0,0,Ψ ) + (C1,C2) = (∂2Ψ,−∂1Ψ ) + (C1,C2) (2.15)

and the current constraint (2.11) becomes

J = Ψ (1/2, h) − Ψ (1/2,0) + C1h. (2.16)

Choosing the density equal to ρ̄, (2.10) reduces to the variational principle

F̃h(J ) ≤ 1

4ρ̄(1 − ρ̄)
inf

Ψ,(C1,C2)

{∫
Λ̂

dx(∂1Ψ )2 + (∂2Ψ )2 + C2
1 + C2

2

}
(2.17)

where Ψ and C1 satisfy the constraint (2.16). The solutions of the above variational problem
will satisfy

	Ψ (x) = α(δx,(1/2,h) − δx,(1/2,0)),

where α is the Lagrange parameter associated to the constraint (2.16). This would lead to
a Ψ which diverges logarithmically at the edges of the slit and therefore cannot satisfy
condition (2.16) for any non-zero α. Nevertheless, using a cut-off similar to r1 in (2.13), we
can recover the vortex like structures (2.12).

Remark 2.3 For more general diffusive systems the hydrodynamic large deviations are gov-
erned by functionals of the type (2.3) which depend on diffusion and conductivity matri-
ces [2]. One could extend the previous discussion to these cases and the large deviation
function Fh(J ) would vanish as soon as h < 1. For open systems, similar computations can
be done as the fluctuations are dominated by vortices localized at the edges of the slit (2.12)
and the reservoirs play a negligible role.

Remark 2.4 We note that in analogy to (2.7) we can consider the partial current specified in
(2.9) as a limiting case of an integrated current in a domain B ⊂ Λ̂,

JB = 1

T

∫ T

0

∫
B

j1(x, t)dx. (2.18)

Taking B to be a rectangle of height h and width w we get that the flux through the line
segment h is given by w−1JB , in the limit w → 0. For the large deviation of JB one can
repeat the analysis leading to (2.6) yielding

inf
j,ρ

IT (j, ρ : B) ≥ T
J 2

B

|B| + CT . (2.19)

This non-zero lower bound reflects the fact that any vortex flow used to implement the
fluctuation JB will have to be of a size w or greater.
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3 Current Fluctuations on a General Graph

In this section, we consider the SSEP on a general connected graph (Λ,EΛ) where Λ is a
finite set of sites and EΛ the set of edges on which particles jump with rate 1 according to
the exclusion rule. We also suppose that particles are created and annihilated at the sites in
the subset Ω of Λ (Ω may be empty). For any site i in Ω , we suppose that creation and
annihilation occur at rates αi and βi (and for simplicity we choose αi + βi = 1). In Sect. 4,
we will apply the results obtained for general graphs to the microscopic domain Λ = {1,L}2

and derive explicit expressions in this case.
If (i, j) is an edge in EΛ then the number of particle jumps from i to j during the time

interval τ is denoted by q(i,j)(τ ). The current flowing through (i, j) during time τ is then
q(i,j)(τ ) − q(j,i)(τ ). If creation and annihilation occur, we enlarge the graph (Λ,EΛ) by
associating to each site i in Ω a new site ī. The site ī can be interpreted as a source and we
denote by q(ī,i)(τ ) the number of particles created at i and q(i,ī)(τ ) the number of particles
annihilated at site i. It is convenient to enlarge the graph EΛ into ĒΛ by adding to the original
graph the new edges (i, ī)i∈Ω and (ī, i)i∈Ω . We denote by Ω̄ the set of the new sites, and by
Λ̄ the union of Λ and Ω̄ .

For any field {Ab}b indexed by the edges and such that for any edge (i, j), A(i,j) =
−A(j,i), we are going to study the fluctuation of the integrated current defined by

QA(τ ) =
∑
b∈ĒΛ

Ab qb(τ ), (3.1)

where the sum is over all the oriented edges b. The field Ab can be thought as a test function.
One can define the divergence and the gradient on the graph. For any field {Ab}b and any

site i in Λ

divA(i) =
∑
j∼i

A(i,j), (3.2)

where the sum is over all the edges leaving site i (this includes the edges (i, ī) if creation or
annihilation occur at site i). For any function Hi in Λ̄, the gradient is a function indexed by
the edges b = (i, j) in ĒΛ

∇bH = Hj − Hi. (3.3)

In the following, we will consider only functions H in Λ̄ equal to 0 in Ω̄ .

3.1 Gauge Invariance

Before, computing the variance of QA(τ ) defined in (3.1), we first show that for large τ

similar asymptotics of log〈exp(λQA(τ ))〉 can be obtained for different choices of {Ab}b.
For any site i in Λ, one has with notation (3.2)

η(i, τ ) − η(i,0) =
∑
j∈Λ̄,
j∼i

q(j,i)(τ ) − q(i,j)(τ ). (3.4)

This implies that for any function H on Λ̄ (equal to 0 on Ω̄)

Q∇H (τ) =
∑
b∈ĒΛ

∇bH qb(τ ) =
∑
i∈Λ̄

Hi

( ∑
j∈Λ̄,
j∼i

q(j,i)(τ ) − q(i,j)(τ )

)

=
∑
i∈Λ

Hi(η(i, τ ) − η(i,0)). (3.5)
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Therefore, Q∇H (τ) remains bounded when the time diverges. As a consequence, for any
λ ∈ R, Ab and Hi

lim
τ→∞

1

τ
log

〈
exp

(
λ

∑
b∈ĒΛ

Ab qb(τ )

)〉

= lim
τ→∞

1

τ
log

〈
exp

(
λ

∑
b∈ĒΛ

(Ab + ∇bH)qb(τ )

)〉
. (3.6)

Thus the large deviations of QA(τ ) and QA+∇H (τ) with respect to time are the same.
We are going now to recall how a field Ab in ĒΛ can be decomposed as

Ab = Vb + ∇bH, (3.7)

where H is a function in Λ̄ (equal to 0 on Ω̄) and V is divergence free in Λ

∀i ∈ Λ, divV (i) = 0.

Note that no conditions are imposed on divV (ī) for ī in Ω̄ , if there are sources (Ω 
= ∅). If
there are no sources (Ω = ∅), then H is defined up to a constant.

For decomposition (3.7) to hold, H has to be the solution of

∀i ∈ Λ, divA(i) = 	Hi =
∑
j∼i

(Hj − Hi). (3.8)

In the case with sources (Ω 
= ∅), the solution of (3.8) can be written in terms of the Green’s
functions, defined for any site k by

∀i ∈ Λ, 	G
(k)
i = −δi,k, and ∀i ∈ Ω̄, G

(k)
i = 0. (3.9)

Thus for j ∈ Λ̄

Hj = −
∑
k∈Λ

divA(k)G
(k)
j , (3.10)

and the field Vb = Ab − ∇bH is divergence free.

3.2 Variance of the Current

We are going to compute the variance of QA(τ ) = ∑
b∈EΛ

Ab qb(τ ). From (3.6–3.7), we
know that to compute large time asymptotics it is enough to consider A which is divergence
free.

One has

∂τ log〈exp(λQA(τ ))〉

=
∑
i∈Ω

αi(exp(λA(ī,i)) − 1)
〈(1 − ηi) exp(λQA(τ ))〉

〈exp(λQA(τ ))〉
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+ βi(exp(−λA(ī,i)) − 1)
〈ηi exp(λQA(τ ))〉
〈exp(λQA(τ ))〉

+
∑

(i,j)∈EΛ

(exp(λA(i,j)) − 1)
〈ηi(1 − ηj ) exp(λQA(τ ))〉

〈exp(λQA(τ ))〉 , (3.11)

where the sum is over all the oriented bonds (i, j) and 〈·〉 denotes the average over the
random process in the time interval [0, τ ] and over an initial condition chosen according to
the invariant measure for the SSEP. The procedure to derive (3.11) is similar to what was
done in [10]. One considers all the possible moves occurring during an infinitesimal time
interval dτ and their contributions to 〈exp(λQA(τ ))〉. The first terms in (3.11) correspond
to a jump of a particle from site ī to site i (creation) or from site i to site ī (annihilation),
whereas the last term corresponds to a jump from site i to j .

Let us denote by 〈·〉λ the expectation of the tilted measure defined as follows: for any
function f

〈f (η)〉λ = lim
τ→∞

〈f (η(τ)) exp(λQA(τ ))〉
〈exp(λQA(τ ))〉 . (3.12)

Using the symmetry A(i,j) = −A(j,i) and the relation αi + βi = 1, we get by expand-
ing (3.11) for small λ

lim
τ→∞ ∂τ log〈exp(λQA(τ ))〉

= λ
∑
i∈Ω

A(ī,i)αi + λ
∑
i∈Λ

divA(i)〈ηi〉λ + λ2

2

∑
i∈Ω

(A(ī,i))
2〈(βiηi + αi(1 − ηi))〉λ

+ λ2

2

∑
(i,j)∈EΛ

(A(i,j))
2〈ηi(1 − ηj )〉λ + O(λ3). (3.13)

For λ small, one expects that

〈ηi〉λ = 〈ηi〉 + O(λ), 〈ηi(1 − ηj )〉λ = 〈ηi(1 − ηj )〉 + O(λ). (3.14)

In principle one would need to know the first order correction to 〈ηi〉λ to obtain (3.11) at the
second order in λ.

For A divergence free, the term 〈ηi〉λ disappears and the formula (3.13) simplifies

lim
τ→∞

1

τ
log〈exp(λQA(τ ))〉 = λMean + λ2

2
Var + O(λ3), (3.15)

where

Mean = lim
τ→∞

〈QA(τ )〉
τ

=
∑
i∈Ω

A(ī,i)αi .

Var = lim
τ→∞

〈QA(τ )2〉c
τ

=
∑

(i,j)∈EΛ

(A(i,j))
2〈ηi(1 − ηj )〉 +

∑
i∈Ω

(A(ī,i))
2〈ηi(1 − αi) + αi(1 − ηi)〉, (3.16)

where the sum is over all the oriented edges. If there are no sources then the second term
in (3.16) disappears.
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For a general field A, we can use the decomposition (3.7). If Ω 
= 0, there is a represen-
tation of V in terms of Green functions (3.10): for any (i, j) ∈ Λ̄

V(i,j) = A(i,j) +
∑
k∈Λ

divA(k)(−G
(k)
i + G

(k)
j ). (3.17)

Invariance (3.6) implies that the asymptotic formula for (3.17) is given by (3.15) with A
replaced by V

Mean =
∑
i∈Ω

V(ī,i)αi .

Var =
∑

(i,j)∈EΛ

(V(i,j))
2〈ηi(1 − ηj )〉 +

∑
i∈Ω

(V(ī,i))
2〈ηi(1 − αi) + αi(1 − ηi)〉, (3.18)

where as before the sum is over all the oriented edges.
Further simplifications can be obtained if the system is in equilibrium at density ρ̄, i.e. if

the intensities of the sources are such that αi = ρ̄, βi = 1 − ρ̄. In this case, 〈ηi(1 − ηj )〉 =
ρ̄(1 − ρ̄) and by expanding (3.18) with Vb = Ab − ∇bH , we get

Var = ρ̄(1 − ρ̄)

[ ∑
(i,j)∈ĒΛ

A2
(i,j) − 2

∑
(i,j)∈ĒΛ

A(i,j)∇(i,j)H +
∑

(i,j)∈ĒΛ

(∇(i,j)H)2

]

= ρ̄(1 − ρ̄)

[ ∑
(i,j)∈ĒΛ

A2
(i,j) + 4

∑
i∈Λ

divA(i)Hi − 2
∑
i∈Λ

	HiHi

]
,

where the second equation is obtained by summation by parts. From (3.8), one has 	Hi =
divA(i) so that

Var = ρ̄(1 − ρ̄)

[ ∑
(i,j)∈ĒΛ

A2
(i,j) + 2

∑
i∈Λ

divA(i)Hi

]
. (3.19)

Replacing H by (3.10), we finally obtain

Var = ρ̄(1 − ρ̄)

[ ∑
(i,j)∈ĒΛ

A2
(i,j) − 2

∑
i,k∈Λ

G
(k)
i divA(k)divA(i)

]
, (3.20)

where the sum is over all the oriented edges (i, j).

4 Two Dimensional SSEP

In this section we will apply the general results of Sect. 3 to the SSEP in the periodic square
lattice Λ = {1,L}2 with nearest neighbor jumps and derive explicit expressions in this case.
We consider the integrated current flowing through the edges in Γ �

L = {L/2,L/2 + 1} ×
{1, �} given by

Q�(τ) =
∑

(i,i+	e1)∈Γ �
L

q(i,i+	e1)(τ ) − q(i+	e1,i)(τ ) (4.1)
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Fig. 3 The dashed lines
represent the dual lattice and Γ �

L
is depicted by the thick edges.
The function H defined in (4.3)
is equal to 1 in the grey region
and 0 outside

with 	e1 = (1,0). The integrated current Q� can be rewritten as QA defined in (3.1) with

∀i, j ∈ Λ, Ai,j =

⎧⎪⎪⎨
⎪⎪⎩

1, if (i, j) = (i, i + 	e1) ∈ Γ �
L,

−1, if (i, j) = (i, i − 	e1) ∈ Γ �
L,

0, otherwise.

(4.2)

The gauge invariance (3.6) is easily illustrated in the two dimensional case. Let z+
� and

z−
� be the 2 sites of the dual lattice such that Γ �

L is the set of edges intersected by the segment
(z+

� , z−
� ) (see Fig. 3). Let γ be another path connecting z+

� to z−
� on the dual lattice, then we

can define the current QB(τ ) flowing through the edges intersecting γ , where B generalizes
(4.2) for the edges intersecting γ . One can check that

A = B + ∇H, (4.3)

for some H . Therefore, the statistics of the currents QA(τ ) and QB(τ ) are asymptotically
the same at large times (3.6). This is of course expected as the particles in the grey region of
Fig. 3 cannot accumulate.

4.1 Computation of the Variance

We turn now to the computation of

Var = lim
τ→∞

〈Q�(τ)2〉c
τ

,

the asymptotic of the variance of Q�(τ) = QA(τ ) (4.2) for large τ . On the periodic domain,
the variance is given by (3.18) without the source term. As the invariant measure is uniformly
distributed, 〈ηi(1 − ηj )〉 depends only on the number N of particles and the size L. Let

SL,N = N(L2−N)

L2(L2−1)
= 〈ηi(1 − ηj )〉 for i 
= j , then the expression (3.19) remains valid

Var = SL,N

[ ∑
(i,j)∈EΛ

A2
(i,j) + 2

∑
i∈Λ

divA(i)Hi

]
, (4.4)
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where H is given by (3.8) which reads now

∀i ∈ Λ, 	Hi = divA(i) =

⎧⎪⎪⎨
⎪⎪⎩

1, if i ∈ Γ
�,+
L = {L/2, s}1≤s≤�,

−1, if i ∈ Γ
�,−
L = {L/2 + 	e1, s}1≤s≤�,

0, otherwise.

(4.5)

Thus H is equal to

Hi = −
∑

k∈Γ
�,+
L

G
(k,k+	e1)

i , (4.6)

where the Green’s function (3.9) is replaced for any sites k, k′ in Λ by

∀i ∈ Λ, 	G
(k′,k)
i = δi,k − δi,k′ . (4.7)

From (4.4), we finally obtain

Var = 2SL,N

[
� −

∑
i,k∈Γ

�,+
L

(G
(k,k+	e1)

i − G
(k,k+	e1)

i+	e1
)

]
. (4.8)

The Green’s function (4.7) is given for any i = (i1, i2) in Λ by

G
(k,k′)
i = 1

L2

∑
q1,q2 
=(0,0)

exp(iq · (i − k)) − exp(iq · (i − k′))
4 − 2 cos(q1) − 2 cos(q2)

(4.9)

where q · j = q1j1 + q2j2 stands for the scalar product with q1 = 2π
m1
L

, q2 = 2π
m2
L

for
m1,m2 in {0,L − 1}. Thus (4.8) becomes with the convention that 1−cos(q2�)

1−cos(q2)
= �2 for

q2 = 0

Var = 2SL,N

(
� − 1

L2

∑
q1,q2 
=(0,0)

(1 − cos(q1))(1 − cos(q2�))

(1 − cos(q2))(2 − cos(q1) − cos(q2))

)
. (4.10)

Using the identity

1

L

∑
q2

1 − cos(q2�)

1 − cos(q2)
= 1

L

L−1∑
m=1

1 − cos(2π�m
L
)

1 − cos(2π m
L
)

+ �2

L
= �,

we finally rewrite (4.10) as

Var = 2SL,N

(
�2

L2
+ 1

L2

∑
q1,q2 
=(0,0)

1 − cos(q2�)

2 − cos(q1) − cos(q2)

)
(4.11)

with q1 = 2π
m1
L

, q2 = 2π
m2
L

for m1,m2 in {0,L − 1}.
One can show, see Appendix B, that for large L and �, expression (4.11) becomes for

h = �/L
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Var = 2SL,N

π

[
logL + h2 + log

(
sinh(πh)

π

)
+ 3 log 2

2
+ γ

+
∑
m≥1

log

(
1 + sin2

(
πh

)
sinh2(πm)

)]
, (4.12)

where γ ≈ 0.577 is the Euler constant.

4.2 Time Dependence

To compare with the results of simulations, it is useful to calculate how the moments of
QA(τ ) depend on τ . At finite times τ , the gauge invariance (3.6) is of no use. We focus now
on systems with no sources and study the variance of QA(τ ) for a general field A at finite
time τ .

Following the same procedure which led to (3.11), (3.13), we get up to the second order
in λ,

∂τ 〈exp(λQA(τ ))〉
= λ

∑
i∈Λ

divA(i)〈ηi(τ ) exp(λQA(τ ))〉

+ λ2

2

∑
(i,j)∈EΛ

(A(i,j))
2〈ηi(τ )(1 − ηj (τ )) exp(λQA(τ ))〉, (4.13)

where the second sum is over all the oriented edges. We therefore need to determine
〈ηi(τ ) exp(λQA(τ ))〉 to first order in λ. To do so, we can write

∂τ 〈ηi(τ ) exp(λQA(τ ))〉
=

∑
(k,j)∈EΛ

k,j 
=i

(exp(λA(k,j)) − 1)〈ηi(τ )ηk(τ )(1 − ηj (τ )) exp(λQA(τ ))〉

+
∑
j∼i

exp(λA(j,i))〈ηj (τ )(1 − ηi(τ )) exp(λQA(τ ))〉

− 〈ηi(τ )(1 − ηj (τ )) exp(λQA(τ ))〉,

where the first sum is over all the oriented edges (k, j) which do not intersect i, but the
second sum is over the neighbors j of i. As for (3.11), this expression can be derived by
adding the contributions of all the single moves which may occur during the infinitesimal
time interval dτ . Expanding to first order in λ, we get for a given τ

∂τ 〈ηi(τ ) exp(λQA(τ ))〉
= λ

∑
(k,j)∈EΛ

k,j 
=i

A(k,j)〈ηi(ηk − ηj )〉 +
∑
j∼i

〈ηj (τ ) exp(λQA(τ ))〉

− 〈ηi(τ ) exp(λQA(τ ))〉 + λA(j,i)〈ηj (1 − ηi)〉. (4.14)
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In the periodic case, the first term in (4.14) vanishes since 〈ηj (1 − ηi)〉 = SL,N , is inde-
pendent of i, j . Hence

∂τ 〈ηi(τ ) exp(λQA(τ ))〉 =
∑

j ;(i,j)∈EΛ

〈ηj (τ ) exp(λQA(τ ))〉 − 〈ηi(τ ) exp(λQA(τ ))〉

+ λSL,N

∑
j∼i

A(j,i). (4.15)

We introduce for any site k in Λ the time dependent Green’s function, solution of

∀i ∈ Λ, ∂τG
(k)
τ,i = 	G

(k)
τ,i + δi,k =

∑
j∼i

(G
(k)
τ,j − G

(k)
τ,i ) + δi,k, (4.16)

with the initial condition G
(k)

0,i = 0. Integrating (4.15), one obtains to first order in λ

〈ηi(τ ) exp(λQA(τ ))〉 = 〈ηi〉 + λSL,N

∑
k

G
(k)
τ,i

∑
j∼k

A(j,k)

= 〈ηi〉 − λSL,N

∑
k

G
(k)
τ,i divA(k). (4.17)

Using (4.17) in (4.13), we get for the second order term in λ

∂τ 〈exp(λQA(τ ))〉 = λ2SL,N

(
1

2

∑
(i,j)∈EΛ

(A(i,j))
2 −

∑
k∈Λ
i∈Λ

G
(k)
τ,i divA(k)divA(i)

)
, (4.18)

where the first sum is over all the oriented edges.
For the periodic square lattice Λ = {1,L}2, the Green’s function (4.16) is given for any

k = (k1, k2) and i = (i1, i2) in Λ

G
(k)
τ,i = 1

L2

[
τ +

∑
q1,q2 
=(0,0)

1 − e−(4−2 cos(q1)−2 cos(q2))τ

4 − 2 cos(q1) − 2 cos(q2)
exp(i q · (i − k))

]
,

with q1 = 2π
m1
L

, q2 = 2π
m2
L

for m1,m2 in {0,L − 1}. Using (4.18), we deduce an exact
expression for the variance of the current Q�(τ) through a slit (A is given by (4.2))

〈Q�(τ)2〉c = 2SL,N

∫ τ

0
ds

(
� − 1

L2

∑
q1,q2 
=(0,0)

(1 − e−(4−2 cos(q1)−2 cos(q2))s)

2 − cos(q1) − cos(q2)

× (1 − cos(q1))(1 − cos(q2�))

1 − cos(q2)

)
.



836 T. Bodineau et al.

Fig. 4 〈Q�(τ)2〉
τ is measured

versus � in numerical simulations
for the SSEP on a square of
80 × 80 sites for times
τ = 250,750,2500 (the results
decrease with τ ). The continuous
lines represent the theoretical
predictions (4.19) at these times,
as well as the limit τ = ∞ (4.11).
Expression (4.19) fully agrees
with the simulations

We finally get

〈Q�(τ)2〉c
τ

= Var + SL,N

τL2

∑
q1,q2 
=(0,0)

(1 − e−(4−2 cos(q1)−2 cos(q2))τ )

(2 − cos(q1) − cos(q2))2

× (1 − cos(q1))(1 − cos(q2�))

1 − cos(q2)
, (4.19)

where Var, given in (4.10) or (4.11), is related to the large τ asymptotics.

4.3 Numerical Simulations

We show now the results of the simulations of the SSEP on a square lattice of size L = 80
with periodic boundary conditions at density ρ̄ = 1/4 (without reservoirs). The initial condi-
tion is chosen at equilibrium (i.e. the L2ρ̄ particles are put at random positions on the square
lattice). For each simulation, we measured the flux Q�(τ) through a slit of microscopic
length � during time τ (see Fig. 1 and (4.1)).

In Fig. 4, our data for 〈Q�(τ)2〉
τ

are compared with the predictions obtained from (4.19) for
different times τ = 250,750,2500. The simulations are averaged over 104 realizations. We
see that unless the time is long enough, the results differ significantly from their infinite time
limit (4.11). One can notice that for short times, the variance grows essentially linearly wrt
� as the current fluctuations are simply the sum of the (almost) independent contributions of
the local current fluctuations along the slit.

In Fig. 5, the theoretical curve Var = limτ→∞ 〈Q�(τ)2〉
τ

computed in (4.11) is shown for
several system sizes L = 40, 80, 160, 320. One can note that the variance of the current
flowing through the whole system (� = L) is independent of L.

In Fig. 6, the same data as in Fig. 5 are shown but the horizontal axis is now �/L. One
can see that for large L, Var grows linearly with logL as predicted in (4.12).

5 Conclusion

In this paper, we have computed the variance of the local current for the symmetric simple
exclusion process on general graphs with reservoirs (3.18) or without (3.20). In two dimen-
sions, our exact expression leads to the asymptotics of the variance through a slit (4.12).
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Fig. 5 Theoretical prediction

(4.11) of limτ→∞ 〈Q�(τ)2〉
τ

versus � for L = 40, 80, 160, 320

Fig. 6 Theoretical prediction

(4.11) of limτ→∞ 〈Q�(τ)2〉
τ

versus �/L for L = 40, 80, 160,
320

The logarithmic dependence of the variance confirms that vortices dominate the local cur-
rent fluctuations. As a consequence a fluctuation of the partial current, say the current flow-
ing through 99% of the system, does not obey the same scaling as a fluctuation of the total
current. For two dimensional diffusive models, we have also seen that the hydrodynamic
large deviation theory does not catch the correct scaling of the current deviations (1.6). Fi-
nite time corrections to the variance were also computed (4.19) and compared to numerical
data (Fig. 4). Finally the fluctuation relation (1.4) for partial currents is discussed in Appen-
dix A.

It would be interesting to investigate the scaling of partial current deviations in higher di-
mensions. Another challenging issue is the computation of the full large deviation functional
for partial currents.

Acknowledgements The research was supported in part by NSF Grant DMR01-279-26 and AFOSR Grant
AFFA9550-04. T.B. and B.D. acknowledge the support of the ANR LHMSHE.

Appendix A: The Fluctuation Theorem and Partial Currents

For the total current, the fluctuation theorem (1.4) holds (in any dimension)

GL,L(J ;ρa,ρb) − GL,L(−J ;ρa,ρb) = J [log z(ρb) − log z(ρa)]. (A.1)



838 T. Bodineau et al.

Fig. 7 A reservoir at density ρa

(resp ρb) is acting on the left
(resp right) site by creating
particles at rate α (resp δ) and
annihilating particles at rate γ

(resp β). We consider the large
deviations of the current Q′

τ
flowing through the lower edge

This fluctuation relation is based on a global symmetry: the fluctuation to produce the current
−J is simply the time reversal of the fluctuation to produce the current J . One may wonder
how this generalizes to the function GL,�. In this appendix, we show by considering a very
simplified model that the fluctuation relation (A.1) is in general not satisfied for partial
current deviations.

We consider the SSEP with two sites {1,2} connected to reservoirs. At site 1, creation
(resp annihilation) occurs at rate α (resp γ ) and at site 2, creation (resp annihilation) occurs
at rate δ (resp β) (see Fig. 7). The exchanges between sites {1,2} obey the usual exclusion
rule, but they can occur through two edges with rate 1. On the one hand the model behaves
like a SSEP with exchange rate 2. Thus the total current flowing from site 1 to site 2 obeys
the fluctuation relation (A.1) (with ρa = α

α+γ
and ρb = δ

δ+β
). On the other hand one can

also consider a current deviation J through one of the two edges. Heuristically one can see
that the system is going to use different strategies to produce a current J or −J . Imagine
the extreme case with only creation at site 1 and annihilation at site 2 (γ = 0 and δ = 0).
For the total current, there is no way of producing a negative flux and the relation (A.1)
is degenerate: log z(ρb) − log z(ρa) = −∞. On the other hand, a negative current can be
achieved through the lower edge by letting a single particle cross the lower edge from site 2
to site 1 and then use the upper edge to go back to site 2. This latter mechanism mimics the
vortices discussed in Sect. 2. Thus, the fluctuations to produce current deviations J or −J

are not related by time reversal. In general, both mechanisms (total current deviation and
local vortices) combine and there is no reason to expect a symmetry such as (A.1).

We analyze now the toy model analytically. We define Q′
τ as the integrated current flow-

ing through the lower edge during the time interval [0, τ ] (see Fig. 7). Instead of trying to
check an expression like (A.1) for the large deviation function we look for a symmetry at
the level of its Legendre transform. As in [10], one knows that

∀λ, lim
τ→∞

1

τ
log〈exp(λQ′

τ )〉 = μ(λ),

where μ(λ) is the largest eigenvalue of the operator

Lλ =

⎛
⎜⎜⎝

−α − δ γ β 0
α −γ − δ − 2 1 + e−λ β

δ 1 + eλ −α − β − 2 γ

0 δ α −γ − β

⎞
⎟⎟⎠ .

The fluctuation relation (A.1) would say that there exists a constant E such that

∀λ, μ(−λ − 2E) = μ(λ). (A.2)
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In order to prove that the previous relation does not hold, we consider for simplicity the
case α = 2, γ = 1 and δ = 1, β = 2. Then the characteristic polynomial of Lλ is

P (u) = (3 + u)(16 + u(44 + u(13 + u)) − 2(8 + u) cosh[λ] − 6 sinh[λ]).
For (A.2) to be satisfied, μ(λ) should be a root of this polynomial and of the polynomial
associated to L−λ−2E . This implies that

2(8 + μ(λ)) cosh[λ] + 6 sinh[λ] = 2(8 + μ(λ)) cosh[−λ − 2E] + 6 sinh[−λ − 2E]
leading to

∀λ, μ(λ) = −3 coth[E] − 8 or μ(λ) = −3.

As μ(λ) cannot be independent of λ, we obtained a contradiction. Thus the fluctuation
relation (A.2) does not hold in this toy model.

For the total current a similar calculation shows that μ(λ) is the root of

Q(u) = (3 + u)(20 + u(6 + u)(7 + u) − 20 cosh[λ] − 12 sinh[λ]).
This is invariant under the symmetry λ → −2 log 2 − λ, implying that (A.2) is satisfied.

Appendix B

In this appendix we derive the large L,� expression (4.12) of the variance (4.11).
Define IN and JN by

IN =
N∑

n=1

1

n2 + b2
and JN =

∫ N

0

dx

b2 + x2
.

One has for large N

IN = JN + π2

[
1

2πb tanh(πb)
− 1

2π2b2
− 1

2πb

]
+ o(1)

= JN + π2

[
1

πb[exp(2πb) − 1] − 1

2π2b2

]
+ o(1). (B.1)

Recall also that
∫ 1

0

dx

2 − B − cos(2πx)
= 1√

(1 − B)(3 − B)
. (B.2)

From (B.1, B.2), one can show, by taking b2 = L2(1 − cosq2)/(2π2), that for 0 < q2 <

2π

1

L

L−1∑
n1=0

1

2 − cosq2 − cos 2πn1
L

= 1√
(1 − cosq2)(3 − cosq2)

+ 1

sin(
q2
2 )(exp[2L sin(

q2
2 )] − 1)

+ o(1). (B.3)
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The main contribution to the difference between the sum in (B.3) and integral (B.2) is given
by the terms with n1 close to 0 or to L. In both cases (1 − cos 2πn1

L
) can be approximated by

its second order expansion and the last term in (B.3) is obtained thanks to (B.1).
(B.3) can be rewritten as

1

L

L−1∑
n1=0

1

2 − cosq2 − cos 2πn1
L

=
1 −

√
3−cosq2

2√
(1 − cosq2)(3 − cosq2)

+ 1

2 sin q2
2

+ 1

sin(
q2
2 )(exp[2L sin(

q2
2 )] − 1)

+ o(1).

One can then perform the sum over q2. For large L, the first term becomes an integral

∫ 1

0
dx

1 −
√

3−cos(2πx)

2√[1 − cos(2πx)][3 − cos(2πx)] = 1

2π

∫ π

0
dφ

1 −
√

1 + sin2 φ

sinφ
√

1 + sin2 φ
= − log 2

2π
.

For large L one can also show that

1

L

L−1∑
n=1

1

2 sin nπ
L

� 1

π

[
logL + log

(
2

π

)
+ γE

]
+ o(1).

For large l and L with l = Lh

1

L

L−1∑
n=1

cos( 2nπ
L

l)

2 sin nπ
L

� − 1

2π
log(2 − 2 cos(2πh)) = − 1

π
log(2 sin(πh)).

There is also the identity

∞∑
n=1

2[1 − cos(2πnh)]
nπ(e2nπ − 1)

= 1

π

∞∑
m=1

log

(
1 + sin2(πh)

sinh2(πm)

)
.

Putting everything together one gets that

1

L2

L−1∑
n1=0

L−1∑
n2=1

1 − cos(q2l)

2 − cosq2 − cosq1

� 1

π

[
logL + log

(
sin(πh)

π

)
+ 3 log 2

2
+ γE +

∑
m≥1

log

(
1 + sin2(πh)

sinh2(πm)

)]
.

Note that for h small, i.e for 1 � l � L, one recovers a well known expression (see [16],
p. 198).
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